9. Stereochemistry

Based on McMurry's Organic Chemistry, 7th edition

Stereochemistry

- Some objects are not the same as their mirror images (technically, they have no plane of symmetry)
 - A right-hand glove is different than a lefthand glove. The property is commonly called "handedness"
 - Organic molecules (including many drugs) have handedness that results from substitution patterns on sp³ hybridized carbon

Why this Chapter?

- Handedness is important in organic and biochemistry
- Molecular handedness makes possible specific interactions between enzymes and substrates

9.1 Enantiomers and the Tetrahedral Carbon

- Enantiomers are molecules that are not the same as their mirror image
- They are the "same" if the positions of the atoms can coincide on a one-to-one basis (we test if they are superimposable, which is imaginary)
- This is illustrated by enantiomers of lactic acid

Examples of Enantiomers

- Molecules that have one carbon with 4 different substituents have a nonsuperimposable mirror image enantiomer
- Build molecular models to see this

9.2 The Reason for Handedness: Chirality

- Molecules that are not superimposable with their mirror images are chiral (have handedness)
- A plane of symmetry divides an entire molecule into two pieces that are exact mirror images
- A molecule with a plane of symmetry is the same as its mirror image and is said to be **achiral** (See Figure 9.4 for examples)

Chirality

- If an object has a plane of symmetry it is necessarily the same as its mirror image
- The lack of a plane of symmetry is called "handedness", chirality
- Hands, gloves are prime examples of chiral object
 They have a "left" and a "right" version

Plane of Symmetry

- The plane has the same (a) thing on both sides for the flask
- There is no mirror plane for a hand

© 2007 Thomson Higher Education

Chirality Centers

- A point in a molecule where four different groups (or atoms) are attached to carbon is called a chirality center
- There are two nonsuperimposable ways that 4 different different groups (or atoms) can be attached to one carbon atom
 - If two groups are the same, then there is only one way
- A chiral molecule usually has at least one chirality center

Chirality Centers in Chiral Molecules

- Groups are considered "different" if there is any structural variation (if the groups could not be superimposed if detached, they are different)
- In cyclic molecules, we compare by following in each direction in a ring

9.3 Optical Activity

- Light restricted to pass through a plane is planepolarized
- Plane-polarized light that passes through solutions of achiral compounds remains in that plane
- Solutions of chiral compounds rotate plane-polarized light and the molecules are said to be optically active
- Phenomenon discovered by Jean-Baptiste Biot in the early 19th century

Optical Activity

- Light passes through a plane polarizer
- Plane polarized light is rotated in solutions of optically active compounds
- Measured with polarimeter
- Rotation, in degrees, is $[\alpha]$
- Clockwise rotation is called dextrorotatory
- Anti-clockwise is levorotatory

Measurement of Optical Rotation

- A polarimeter measures the rotation of planepolarized that has passed through a solution
- The source passes through a polarizer and then is detected at a second polarizer
- The angle between the entrance and exit planes is the optical rotation.

Specific Rotation

- To have a basis for comparison, define specific rotation, [α]_D for an optically active compound
 [α]_D = observed rotation/(pathlength x concentration) = α/(I x C) = degrees/(dm x g/mL)
- Specific rotation is that observed for 1 g/mL in solution in cell with a 10 cm path using light from sodium metal vapor (589 nm)

Specific Rotation and Molecules

- Characteristic property of a compound that is optically active the compound must be chiral
- The specific rotation of the enantiomer is equal in magnitude but opposite in sign

Table 9.1	Specific Rotation of Some Organic Molecules		
Compound	[α] _D	Compound	[α] D
Penicillin V	/ +233	Cholesterol	-31.5
Sucrose	+66.47	Morphine	-132
Camphor	+44.26	Cocaine	-16
Chloroform	n O	Acetic acid	0

© 2007 Thomson Higher Education

9.4 Pasteur's Discovery of Enantiomers

- Louis Pasteur discovered that sodium ammonium salts of tartaric acid crystallize into right handed and left handed forms
- The optical rotations of equal concentrations of these forms have opposite optical rotations
- The solutions contain mirror image isomers, called enantiomers and they crystallized in distinctly different shapes – such an event is rare

Sodium ammonium tartrate

© 2007 Thomson Higher Education

9.5 Sequence Rules for Specification of Configuration

- A general method applies to the configuration at each chirality center (instead of to the whole molecule)
- The configuration is specified by the relative positions of all the groups with respect to each other at the chirality center
- The groups are ranked in an established priority sequence and compared
- The relationship of the groups in priority order in space determines the label applied to the configuration, according to a rule

Sequence Rules (IUPAC)

Rule 1:

- Assign each group priority according to the Cahn Ingold-Prelog scheme
- With the lowest priority group pointing away, look at remaining 3 groups in a plane
- Clockwise is designated R (from Latin for "right")
- Counterclockwise is designated S (from Latin word for "left")

Rule 2:

If decision can't be reached by ranking the first atoms in the substituents, look at the second, third, or fourth atoms until difference is found

Rule 3:

Multiple-bonded atoms are equivalent to the same number of single-bonded atoms

© 2007 Thomson Higher Education

9.6 Diastereomers

Molecules with more than one chirality center have mirror image stereoisomers that are enantiomers

In addition they can have stereoisomeric forms that are not mirror images, called **diastereomers**

^{© 2007} Thomson Higher Education

9.7 Meso Compounds

- Tartaric acid has two chirality centers and two diastereomeric forms
- One form is chiral and the other is achiral, but both have two chirality centers
- An achiral compound with chirality centers is called a meso compound – it has a plane of symmetry
- The two structures on the right in the figure are identical so the compound (2R, 3S) is achiral

9.8 Racemic Mixtures and The Resolution of Enantiomers

- A 50:50 mixture of two chiral compounds that are mirror images does not rotate light – called a racemic mixture (named for "racemic acid" that was the double salt of (+) and (-) tartaric acid
- The pure compounds need to be separated or resolved from the mixture (called a racemate)
- To separate components of a racemate (reversibly) we make a derivative of each with a chiral substance that is free of its enantiomer (resolving agent)
- This gives diastereomers that are separated by their differing solubility
- The resolving agent is then removed

9.9 A Review of Isomerism

Constitutional Isomers

Different order of connections gives different carbon backbone and/or different functional groups

Different carbon	CH ₃		
	СН ₃ с́НСН ₃	and	CH ₃ CH ₂ CH ₂ CH ₃
	2-Methylpropane		Butane
Different functional	CH ₃ CH ₂ OH	and	CH ₃ OCH₃
groups	Ethyl alcohol		Dimethyl ether
Different position of	NH ₂		
functional groups	CH ₃ CHCH ₃	and	CH ₃ CH ₂ CH ₂ NH ₂
© 2007 Thomson Higher Education	Isopropylamine		Propylamine

Stereoisomers

Same connections, different spatial arrangement of atoms

- Enantiomers (nonsuperimposable mirror images)
- Diastereomers (all other stereoisomers)
 - Includes cis, trans and configurational

© 2007 Thomson Higher Education

9.10 Stereochemistry of Reactions: Addition of H_2O to Alkenes

- Many reactions can produce new chirality centers from compounds without them
- What is the stereochemistry of the chiral product?
- What relative amounts of stereoisomers form?
- Example addition of H₂O to 1-butene

Achiral Intermediate Gives Racemic Product

- Addition via carbocation
- Top and bottom are equally accessible

9.11 Stereochemistry of Reactions: Addition of H_2O to a Chiral Alkene

- What is the sterochemical result of the addition of H₂O to a chiral alkene R-4-methyl-1-hexene
- Product has 2 chiral centers

(R)-4-Methyl-1-hexene (chiral) 4-Methyl-2-hexanol (chiral)

© 2007 Thomson Higher Education

9.12 Chirality at Nitrogen, Phosphorus, and Sulfur

- N, P, S commonly found in organic compounds, and can have chirality centers
- Trivalent nitrogen is tetrahedral
- Does not form a chirality center since it rapidly flips
- Individual enantiomers cannot be isolated

Also applies to phosphorus but it flips more slowly

Lowest priority

(R)-Methylpropylphenylphosphine (configurationally stable)

© 2007 Thomson Higher Education

9.13 Prochirality

A molecule that is achiral but that can become chiral by a single alteration is a prochiral molecule

Prochiral Distinctions: Faces

- Planar faces that can become tetrahedral are different from the top or bottom
- A center at the planar face at a carbon atom is designated *re* if the three groups in priority sequence are clockwise, and *si* if they are counterclockwise

Prochiral distinctions, paired atoms or groups

- An sp³ carbon with two groups that are the same is a prochirality center
- The two identical groups are distinguished by considering either and seeing if it was increased in priority in comparison with the other
- If the center becomes *R* the group is *pro-R* and *pro-S* if the center becomes *S*

Prochiral Distinctions in Nature

- Biological reactions often involve making distinctions between prochiral faces or or groups
- Chiral entities (such as enzymes) can always make such a distinction
- Example: addition of water to fumarate

9.14 Chirality in Nature and Chiral Environments

- Stereoisomers are readily distinguished by chiral receptors in nature
- Properties of drugs depend on stereochemistry
- Think of biological recognition as equivalent to 3point interaction
- See Figure 9-17